Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-157308

ABSTRACT

There are many ways to coat tablets. Coatings are a very important part in the formulation of pharmaceutical dosage form to achieve excellent formulation quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous or organic-based polymer solutions. Such film coating brings their own disadvantages. Solventless coatings are alternative technique of coating. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time due to reduction of step of drying/evaporation. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review includes various solventless coating methods like magnetic assisted impaction coating , hotmelt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating that can be used to coat the pharmaceutical dosage forms.

2.
Article in English | IMSEAR | ID: sea-152937

ABSTRACT

Floating matrix tablets of losartan potassium were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using polymers Methocel K15 and Methocel K100 in combination with other standard excipients. Sodium bicarbonate was incorporated as gas generating agent. The effects of sodium bicarbonate and polymers on drug release profile and floating properties were investigated. It was found that viscosity of Methocel K15 and Methocel K100 along with sodium bicarbonate had significant impact on the release and floating properties of the delivery system. The decrease in the release rate was observed with an increase in the viscosity of the polymeric system. Polymer with high viscosity Methocel K100 was shown to be beneficial than low viscosity polymer Methocel K15 in improving the floating properties of gastric floating drug delivery system (GFDDS). The observed difference in the drug release and floating properties of GFDDS could be attributed to the difference in the basic properties of two polymers, Methocel K15 and Methocel K100 due to their water uptake potential and functional group substitution. The release mechanism were explored and described with zero-order, first-order and Korsmeyer-Peppas equations. The drug release profiles and buoyancy of the floating tablets were stable when stored at 40°C/75% RH for 6 months.

3.
Article in English | IMSEAR | ID: sea-167910

ABSTRACT

Floating matrix tablets of losartan potassium were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using polymers Methocel K15 and Methocel K100 in combination with other standard excipients. Sodium bicarbonate was incorporated as gas generating agent. The effects of sodium bicarbonate and polymers on drug release profile and floating properties were investigated. It was found that viscosity of Methocel K15 and Methocel K100 along with sodium bicarbonate had significant impact on the release and floating properties of the delivery system. The decrease in the release rate was observed with an increase in the viscosity of the polymeric system. Polymer with high viscosity Methocel K100 was shown to be beneficial than low viscosity polymer Methocel K15 in improving the floating properties of gastric floating drug delivery system (GFDDS). The observed difference in the drug release and floating properties of GFDDS could be attributed to the difference in the basic properties of two polymers, Methocel K15 and Methocel K100 due to their water uptake potential and functional group substitution. The release mechanism were explored and described with zero-order, first-order and Korsmeyer-Peppas equations. The drug release profiles and buoyancy of the floating tablets were stable when stored at 40°C/75% RH for 6 months.

SELECTION OF CITATIONS
SEARCH DETAIL